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Motivations and general situation

Situation: A Principal takes the initiative of a contract which is
proposed to an Agent. The Agent can accept or reject it (he is held
to a given level).

Problem: The Principal is potentially imperfectly informed about the
actions of the Agent which impact her wealth (the output).

Goal: Design a contract that maximises the utility of the Principal
under constraints.
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Moral hazard

The action of the Agent is hidden or not contractible.

A Stackelberg-like equilibrium between the Principal and the Agent:

compute the best-reaction function of the Agent given a contract

determine his corresponding optimal effort

use this in the utility function of the Principal to maximise over all
contracts.
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The Holmström-Milgrom problem
Holmström-Milgrom (1985).

Fix a contract ⇠. The Agent compute its best reaction effort given ⇠.
He solves (exponential utilities)

U

A
0 p⇠q :“ sup

aPA
EPa

«

UA

˜

⇠ ´
ª T

0
kpasqds

¸�

. (1)

Martingale representation Theorem:

”(1) ñ solving a Backward SDE with a unique solution pY ,Z q ”,

Yt “ ⇠ `
ª T

t

ˆ

´RA

2
|Zs |2 ` sup

a
tasZs ´ kpasqu

˙

ds ´
ª T

t
ZsdBs

U

A
0 p⇠q “ ´e

´RAY0 , a

‹pZ q.
We get the following representation for admissible contract ⇠

⇠ “ Y0 ´
ª T

0

ˆ

´RA

2
|Zs |2 ` sup

a
paZs ´ kpaqq

˙

ds `
ª T

0
ZsdBs .
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The Holmström-Milgrom problem and some extensions

The Principal’s Problem:

U

P
0 “ sup

⇠, UA
0 p⇠q•R0

EPa‹pZq rUPpBT ´ ⇠qs ,
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EPa‹pZq rUPpBT ´ ⇠qs ,

becomes
U

P
0 “ sup

Z , Y0•´ lnp´R0q
RA

,

EPa‹pZq rUPpBT ´ ⇠qs .

Holmström-Milgrom: continuous time settings. Extended then by
Schättler and Sung; Sung; Müller; Hellwig and Schmidt ... see the
book of Cvitanić and Zhang.
Sannikov: continuous time payment and random retiring time,
Cvitanić, Possamaï and Touzi: the Agent can control the volatility of
the output: a dynamical approach of the problem.

Some recent applications: Hajjej, Hillairet, Mnif and Pontier for Public
Private Partnerships; Capponi and Frei: accidents prevention model.
Among others...
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The N-players model

Assume that the Principal can hire N-interacting Agents.

Multi Agents models.

One period model: Holmström; Mookherjee; Green and Stokey; Har-
ris, Kriebel and Raviv; Nalebuff and Stiglitz (among others)
Continuous time: Koo, Shim and Sung ; Elie and Possamaï.

The Agents problems: We fix the contracts.

Find a Nash equilibrium ñ solve a multidimensional (qg-)BSDE

Not wellposed theory for a system of quadratic growth BSDEs (see
Frei and Dos Reis for instance).
Recent investigations: Xing and Žitković ; Harter and Richou.
Elie and Possamaï circumvents this problem by imposing wellposedness
in the admissibility of the contracts.

The Principal problem: a standard stochastic control problem.
2N state variables: the outputs controlled by the Agents and their
continuation utilities.
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The problem under interest

What happens when N goes to `8 ?

Related to Mean Field Game theory. Introduced by Lasry and Lions;
Huang, Caines and Malhamé.

Typical situations: how a firm should provide electricity to a large
population, how city planners should regulate a heavy traffic or a
crowd of people.

Systemic risk: study large number of banks and the underlying con-
tagion phenomenon. See for instance Carmona, Fouque and Sun;
Garnier, Papanicolaou and Yan; Fouque and Langsam...
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The output process
Let ⌦ :“ R ˆ Cpr0,T s;Rq, and P0 the Wiener measure. Fix a probability
measure �0 (initial distribution of the state of the agent), P :“ �0 b P0.
Canonical process px ,W q. Let F be the completed natural filtration.

Xt “ x `
ª t

0
�spX qdWs , t P r0,T s, P ´ a.s.

Let
µ P PpCq "arbitrary distribution of the output managed by the in-
finitely many other Agents"
q : r0,T s ›Ñ PpRq "arbitrary distribution of the actions chosen by
these infinitely many Agents"
↵ P A, F-adapted control process (+integrability conditions) for the
representative Agent.

dPµ,q,↵

dP “ E
˜

ª T

0
�´1
t pX qbpt,X , µ, qt ,↵tqdWt

¸

.

Xt “ x `
ª t

0
bps,X , µ, qs ,↵sqds `

ª t

0
�spX qdW µ,q,↵

s , t P r0,T s, P ´ a.s.
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The Agent problem as an MFG problem

Stackelberg equilibrium: For given ⇠, and µ and q, the representative
Agent has to solve

U

A
0 pµ, q, ⇠q :“ sup

aPA
EPµ,q,a

«

⇠ ´
ª T

0
kspX , µ, qs , asqds

�

looooooooooooooooooooomooooooooooooooooooooon

“:uA
0 pµ,q,⇠,aq

.

Find a Mean field equilibrium: Lasry and Lions; Huang, Caines and
Malhamé; Cardaliaguet; Bensoussan, Frehse and Yam; Guéant...
Solve the Mean Field Game problem: pa‹, µ‹, q‹q such that

(MFG)p⇠q

$

’

&

’

%

u

A
0 pµ, q, ⇠, a‹q “ U

A
0 pµ, q, ⇠q,

Pa‹,µ‹,q‹ ˝ pX q´1 “ µ‹

Pa‹,µ‹,q‹ ˝ pa‹
t q´1 “ q

‹
t .

See the works of Carmona and Lacker; Lacker; Carmona, Delarue and
Lacker...
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The Agent problem: an other story of BSDEs

We now consider the following system which is intimately related to mean-
field FBSDE

(MF-BSDE)p⇠q

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Yt “ ⇠ `
ª T

t
sup
↵

pbps,X , µ, qs ,↵qZs ´ kspX , µ, qs ,↵qqds
´ ≥T

t ZsdXs ,

P↵‹pX ,Z ,µ‹,q‹q,µ‹,q‹ ˝ pX q´1 “ µ‹,

P↵‹pX ,Z ,µ‹,q‹q,µ‹,q‹ ˝ p↵tq´1 “ q

‹
t .

Similar studies on MF-BSDEs: Carmona and Delarue; Buckdahn, Djehiche,
Li, and Peng; Li and Luo...



The Agent problem: an other story of BSDEs

” Solve pMFGqp⇠q ñ Solve pMF-BSDEqp⇠q”

Theorem (Elie, M., Possamaï (16’))

Let ⇠ be such that pMFGqp⇠q admits a solution pµ‹, q‹, a‹q. Then

there exists a solution pY ‹,Z ‹, µ‹, q‹q to pMF-BSDEqp⇠q and a

‹
is
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A fundamental characterization of ⌅

Let Y0 P R and Z predictable + integrability conditions. Let ↵‹,Z be any
maximiser of the generator of pMF-BSDEqp⇠q. Consider the controlled
McKean-Vlasov system:

(SDE)MV

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Xt “ x `
ª t

0
bps,X , µ, qs ,↵

‹,Z
s qds `

ª t

0
�spX qdW µ,q,↵‹,Z

¨
s ,

Y

Y0,Z
t “ Y0 `

ª t

0
kspX , µ, qs ,↵

‹,Z
s qds `

ª t

0
Zs�spX qdW µ,q,↵‹,Z

s ,

µ “ Pµ,q,↵‹p¨,X ,Z¨,µ,q¨q ˝ X

´1,

qt “ Pµ,q,↵‹,Z ˝ p↵‹,Z
t q´1.

Theorem (Elie, M., Possamaï (16’))

⌅ “
!

Y

Y0,Z
T , Y0 • R0, Z sufficiently integrable...

)

.



The Principal problem: a non standard stochastic control
problem

U

P
0 :“ sup

⇠P⌅
EPµ‹,q‹,↵‹

rXT ´ ⇠s

“ sup
Y0•R0

sup
Z

EPµ‹,q‹,↵‹
„

XT ´ Y

Y0,Z
T

⇢

.

A stochastic optimal control problem with a two-dimensional state variable
M

Z :“ pX ,Y Y0,Z q controlled by Y0 and Z . Two possible approaches:

Carmona and Delarue: using the maximum principle and the adjoint
process of MZ .
Pham and Wei: using a dynamic programming principle and an HJB
equation associated with the McKean-Vlasov optimal control prob-
lem on the space of measures (inspired by ideas of Lions).

On the admissibility of the contract (motivated by examples):
Assume that the HJB equation has a solution with an optimal z‹ for
instance.
We check that for this z‹, the system pSDEqMV has indeed a solution
and then ⇠‹ :“ Y

R0,z
‹

T will be an optimal admissible contract.
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Application: mean dependency and variance penalisation

bps, x , µ, q, aq :“ a ` ↵x ` �1

ª

R
xdµspxq ` �2

ª

R
xdqspxq ´ �Vµpsq,

Vµpsq:“
ª

R
|x |2dµspxq `

ˇ

ˇ

ˇ

ˇ

ª

R
xdµspxq

ˇ

ˇ

ˇ

ˇ

2

, kpaq “ a

2

2
.

Theorem (Elie, M. , Possamaï (16’))

The optimal contract for the problem of the Principal is

⇠‹ :“ � ´ ↵p1 ` �2q
ª T

0
e

p↵`�1qpT´tq
Xtdt ` p1 ` �2q

ª T

0
e

p↵`�1qpT´tq
dXt ,

for some constant � explicitly given and the associated optimal effort of

the Agent is

a

‹
u :“ p1 ` �2qep↵`�1qpT´uq, u P r0,T s.

Extension:
U

P
0 “ sup⇠ EP‹

„

XT ´ ⇠

⇢

´�VarP‹ pXT q ´ �̃VarP‹ p⇠q ` �̂CovP‹ pXT , ⇠q.
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Link with the N-agents model.
Let pt, x , aq P r0,T s ˆ RN ˆ A

N ,

b

N
`

t, x , µNpxq, a
˘

:“ a ` ↵x ` �1

ª

RN

wµNpdwq,

with µNpxq the empirical distribution of x .

Theorem (Elie, M., Possamaï (16’))

a

N,‹
t “ exppp↵ ` �1qpT ´ tqq1N .

In particular, the optimal effort of the ith Agent in the N players model

coincides with the optimal effort of the Agent in the mean–field model.

The optimal contract ⇠N,‹
proposed by the Principal is

⇠N,‹ “ R

N
0 ´

ª T

0

e

2pT´tq

2
1Ndt ´

ª T

0
e

pT´tq
BNX

N
t dt `

ª T

0
e

pT´tq
dX

N
t ,

and for any i P t1, . . . ,Nu we have

PaN,‹
N ˝

`

p⇠N,‹qi
˘´1 weakly›Ñ

NÑ8
Pa‹ ˝ p⇠‹q´1.
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Thank you.

Thibaut Mastrolia Moral Hazard and mean field type interactions: A tale of a Principal and many Agents


